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We discuss phase transitions and the phase diagram of a classical dimer model with anisotropic interactions
defined on a square lattice. For the attractive region, the perturbation of the orientational order parameter
introduced by the anisotropy causes the Berezinskii-Kosterlitz-Thouless transitions from a dimer-liquid to
columnar phases. According to the discussion by Nomura and Okamoto for a quantum-spin chain system
�J. Phys. A 27, 5773 �1994��, we proffer criteria to determine transition points and also universal level-splitting
conditions. Subsequently, we perform numerical diagonalization calculations of the nonsymmetric real transfer
matrices up to linear dimension specified by L=20 and determine the global phase diagram. For the repulsive
region, we find the boundary between the dimer-liquid and the strong repulsion phases. Based on the dispersion
relation of the one-string motion, which exhibits a twofold “zero-energy flat band” in the strong repulsion limit,
we give an intuitive account for the property of the strong repulsion phase.
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I. INTRODUCTION

In the early 1960s, Kasteleyn �1� and Temperley and
Fisher �2,3� studied the classical dimer model �DM� defining
the statistical-mechanical problem of the covering of a lattice
by dimers. They treated the DM on, for example, the square
lattice in the thermodynamic limit and obtained the partition
function to give the extensive entropy of an ensemble of
dimer configurations. In particular, it was shown that the
close-packed model defined on planar lattices can be solved
exactly by Pfaffian techniques �4�. The properties of these
ensembles were studied in subsequent research. For example,
those defined on bipartite �nonbipartite� lattices such as the
square �triangular� lattice exhibit critical �off-critical� behav-
ior �5,6�, which are now thought to reflect an existence �ab-
sence� of the height representations for the DMs �7–11�.
While the relevance of dimers as diatomic molecules ad-
sorbed on a lattice is clear and direct, it can be also related to
other degrees of freedom �12�. For instance, the zero-
temperature Ising-spin antiferromagnet on a triangular �Vil-
lain� lattice can be related to the DM on a hexagonal �square�
lattice, where each dimer represents an unsatisfied bond of
spins �7,8,13�. Also widely known is the string representation
whereby dimer systems under a certain condition can be re-
lated to loop gases whose configurations are classified by
winding numbers �see below� �7,8,14�. This correspondence
has been utilized in discussions of polymer systems �15�.
More importantly, Rokhsar and Kivelson introduced quan-
tum dimer models �QDMs� to describe the valence-bond
physics in quantum Heisenberg antiferromagnets, where the
dimer represents a tightly binding singlet pair of quantum
spins �16�.

These are but a fraction of the examples that show DMs
having importance in a wide range of research and drawing
attention over the years; in particular, current interest has
been mainly focused on exotic phases with topological or-
ders observed in the QDMs �17�. More recently, Blunt et al.
reported on an adsorption experiment of certain rodlike or-
ganic molecules on graphite �18� and explained its relevance
to the DM on a hexagonal lattice, which includes interactions

between neighboring dimers �19�. This exhibits the fact that
interaction effects in classical dimers are also important from
both theoretical and experimental viewpoints �20�.

In this paper, we investigate an interacting dimer model
�IDM� defined on a square lattice: suppose the lattice con-
stant a=1 and let � denote the set of lattice sites. Then the
following reduced Hamiltonian expresses interactions be-
tween two nearest-neighbor dimers:

H = − �
�k,l���

�Khn�k +
1

2
,l�n�k +

1

2
,l + 1�

+ Kvn�k,l +
1

2
�n�k + 1,l +

1

2
�	 , �1�

where lattice sites and lattice bonds are denoted, respectively,
as �k , l� and �k+ 1

2 , l� with k , l�Z. We locate the dimer occu-
pation numbers n�k+ 1

2 , l�=0 or 1 �binary variables� on the
bonds. The first �second� term on the right-hand side of Eq.
�1� represents an interaction between parallel horizontal �ver-
tical� dimers �see Fig. 1�a��. Defining the local Boltzmann
weights as

h = exp�Kh�, v = exp�Kv� , �2�

with subscripts on the K’s referring to the corresponding
dimer pair, the partition function Z�h ,v� is then expressible
as a summation with respect to the dimer configurations C on
�,

Z�h,v� = �
C

hNh�C�vNv�C�, �3�

where Nh�C� �Nv�C�� represents the number of plaquettes
with parallel horizontal �vertical� dimers. For large h or v, an
attractive case, a twofold- or a fourfold-degenerate state with
columnar order is expected to be stabilized �see examples in
Figs. 1�c� and 1�d��. Meanwhile, for small h and v, a repul-
sive case, a highly degenerate phase is stabilized �see an
example in Fig. 1�b��. For the isotropic case Kh=Kv, results
of some numerical calculations are already available in the
literature �20,21�, but its extension to the anisotropic case
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Kh�Kv is still lacking. Therefore, we shall clarify the global
phase diagram and provide evidence corroborating the prop-
erties of the phase transitions observed in anisotropically in-
teracting dimers.

According to the effective field theory discussed by Pa-
panikolaou, Luijten, and Fradkin �PLF� �22�, one effect ab-
sent in the isotropic system is a perturbation by the orienta-
tional order parameter; this brings about Berezinskii-
Kosterlitz-Thouless �BKT� transitions �23,24�. Another
effect is a renormalization of the so-called geometric factor,
which becomes important in numerical calculations of uni-
versal quantities, e.g., the central charge and the scaling di-
mensions of operators �see below�. In such cases, as demon-
strated in our own research on an antiferromagnetic Potts
model with anisotropic next-nearest-neighbor couplings, the
so-called level-spectroscopy analysis �25,26� can provide an
effective way to determine phase transition points �27�. For
this reason, we shall also employ the same strategy for the
present model �28�.

For later convenience, we shall briefly explain here the
string representation of the DM on �. As explicitly explained
in Ref. �29�, the transformation of a dimer configuration,
e.g., Fig. 1�a�, to a string configuration is performed via an
XOR operation with reference configuration �Fig. 1�b��. The
XOR operation takes the exclusive OR between occupation
�binary� numbers in these two configurations over each bond.
Consequently, we obtain strings running in the y direction

�see the two gray lines in Fig. 1�a��. Due to the close-packing
condition, they have no end points, and thus the string con-
figurations for a L�L system �L is an even number� with
periodic boundary conditions can be characterized by wind-
ing numbers �Nx ,Ny� satisfying 0�Nx,y �L. While in the
numerical calculation of the transfer matrices we shall em-
ploy Ny as a conserved quantity in the row-to-row transfer of
configurations, we would rather use a quantity

M 
 Ny − L/2 �4�

��M��L /2� for convenience in our discussion.
The organization of this paper is as follows. In Sec. II, we

review previous research results to give an effective descrip-
tion of the low-energy and long-distance behavior of the
IDMs �22�. In particular, the operator content of the theory,
including expressions of local order parameters and defect
operators and their scaling dimensions are explained in de-
tail. We then provide the conditions to determine the BKT-
transition points and clarify some universal relations among
excitation levels, which serve as a check of our calculational
results. In doing this, a correspondence with a frustrated
quantum-spin chain system plays a guiding role. Thus, this
correspondence will be emphasized and referred to when ap-
propriate. In Sec. III, we summarize our numerical study and
results obtained by the transfer-matrix calculations based on
the conformal field theory �CFT� �30�. First, we demonstrate
that the theoretical predictions in Sec. II can be observed
precisely via numerical analysis of the excitation spectra.
Next, we provide the global phase diagram of interacting
dimers, which includes the BKT, the second-order, and the
first-order transition lines. Also, in a strong repulsion region,
we expect a highly degenerate phase including the staggered
state. We calculate the string-number dependence of the free-
energy density for the isotropic case. Furthermore, we inves-
tigate the “dispersion relation” of the one-string motion, and
then based on these data we shall try to give an insight into
properties of the strong repulsion phase. The last section,
Sec. IV, is devoted to discussion and summary. We also pro-
vide our method to evaluate the original BKT transition in
the isotropic system. Finally, we compare our data with pre-
vious research results.

II. THEORY

Continuum field theories offer unified approaches to in-
vestigate phase transitions in interacting systems on lattices.
They are derived in the scaling limit a→0 while keeping x
= �x1 ,x2�= �ak ,al /�� finite. Here � is the geometric factor,
taking a fixed value, e.g., �=1 �2 /�3� for isotropic systems
on a square �triangular� lattice. However, for anisotropic sys-
tems, renormalization of � is necessary due to interactions
leading to nonuniversal values. The renormalized � can be
also related to the velocity of an elementary excitation ob-
served in Tomonaga-Luttinger liquids �31�. Thus, � disap-
pears from the theoretical description if we properly employ
its renormalized value; but as we will see in Sec. III, it be-
comes rather important in numerical calculations.

According to PLF, the effective description of the IDM
takes the form of a sine-Gordon field theory �20�. In the

(c) σx σd

(d)

h

h

h v

v

(a)

(b)

FIG. 1. Dimer configurations. �a�, �b�, �c�, and �d� represent
examples of the liquid, the staggered, the HC, and the VC states,
respectively. The local Boltzmann weights are also given in �a�. The
string representation for �a� using �b� as “reference state” �see text�
is given by the gray lines in the y direction. In �b�, a dotted line in
the �11� direction indicates a counterclockwise rotation of all dimers

along the line; a dashed line in the �11̄� direction exhibits a clock-
wise rotation. In �c�, elements �x and �d of the C4v-point group
representing reflections about solid lines in the y and the diagonal
directions are indicated.
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present case, its expression is given by the Lagrangian den-
sity L=L0+L2+L4 with

L0 =
K

2�
��	�2, �5�

L2 =
y2

2�
2 :cos 2�2	: , �6�

L4 =
y4

2�
2 :cos 4�2	: . �7�

We denote the course-grained height field in the two-
dimensional Euclidean space as 	�x�, which satisfies a peri-
odicity in height space of �2	=�2	+2�N �N�Z� �9�. Due
to the close packing of the dimers, the defect operators given
in terms of the disorder field � dual to 	 are absent from L,
so that it represents a roughening phase or flat phases of an
interface model in three dimensions. The theoretical param-
eter K �the Gaussian coupling� describes the stiffness and
determines the dimensions of the operators on the Gaussian
fixed line L0. In our notation, the vertex operator with m
electric and n magnetic charges is given by Om,n
=eim�2	+in�2� whose dimension is

Xm,n = 1
2 �K−1m2 + Kn2� . �8�

Therefore, K=1 �K=4� represents the condition that the per-
turbation L2 �L4� becomes marginal.

To make our discussion more concrete, we introduce the
average �a� and the difference �d� of the couplings as

Ka,d = 1
2 �Kv � Kh� , �9�

where the first �second� subscript refers to the upper �lower�
sign. Then, around the noninteracting point, the parameters
in L are roughly given by

K 
 1
2 + c1Ka, y2 
 c2Kd, y4 
 − c3 �10�

�c1,2,3
0�. We see that the attractive interaction Ka
0 in-
creases K and tends to stabilize the columnar states. Also, y2
in L2 �the orientational order parameter� is proportional to
the difference Kd, while y4 in L4 which is a remnant from the
discreteness of the square lattice is almost constant. For K

4, both nonlinear terms are relevant, but they are not com-
peting against each other, so the fourfold-degenerate colum-
nar state stabilized by L4 is only lifted to realize twofold-
degenerate columnar states by L2 �see below�. Since the
BKT transition by L4 was already discussed in the literature
�20,21�, we shall focus our attention on the role of L2.

According to the standard argument �32�, the
renormalization-group �RG� flow diagram of the sine-
Gordon model L0+L2 �here L4 is irrelevant� is expressed by
the BKT RG equations �23,24�; we depict it by employing
the coupling constants y0 �=2−2K� and y2 in Fig. 2, where
the separatrices y2= �y0 separate the dimer-liquid phase
from two types of twofold-degenerate columnar phases,
namely, the horizontal columnar �HC� state consisting of
dimers in the horizontal direction and the vertical columnar
�VC� state consisting of dimers in the vertical direction.

Now, we can point out that our task to treat the BKT transi-
tions in the IDM can be related to the investigation of the
spin-1

2 XXZ chain with next-nearest-neighbor interaction be-
cause these share the same effective description �25,26�. To
specify the relationship, we introduce the following opera-
tors:

O0 = �2 cos �2	 , �11�

O1,2 = exp��i�2�� , �12�

O3 = �2 sin �2	 . �13�

Here O0,3 stand for the horizontal and the vertical compo-
nents of the columnar local order parameter and take expec-
tation values �O0��0 and �O3�=0 ��O0�=0 and �O3��0� in
the HC �VC� phase; O1,2 are the defect �or monomer� opera-
tors which change the winding numbers classifying dimer
configurations. Alternatively, in the quantum-spin chain lan-
guage, Eqs. �11�–�13� correspond to the Néel, the doublet,
and the dimer operators and give the lowest excitations in the
Néel, the spin-liquid, and the dimer phases, respectively �see
Table I�. Nomura and Okamoto �NO� provided criteria to
determine the BKT-transition points between the spin-liquid
and the Néel �or dimer� phases based on one-loop calcula-
tions of the scaling dimensions of these operators �33�.
Therefore, following their argument, we shall discuss proce-
dures to determine the BKT-transition points in our IDM.

Consider a system with a finite-strip geometry, viz., a nar-
row band of width L along the x direction and infinite length
along the y direction. The periodic boundary condition is
imposed across the width of the strip. The finite-size correc-
tions to the scaling dimensions of the above operators are our
key quantities to be evaluated analytically and numerically.
Here, we first consider the system near the separatrix y2=
−y0 where a small parameter t can be introduced, so that

vertical columnar

horizontal columnar

dimer−liquid

Kd

y0

y2

Ka

FIG. 2. �Color online� A schematic representation of the BKT
RG-flow diagram around the origin of the �y0 ,y2� plane. The coor-
dinate frame of the average of couplings Ka and the difference of
couplings Kd �see text� is present as an inset.
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y2=−y0�1+ t� ��t��1�. Next, the conformal perturbation cal-
culations of the renormalized scaling dimensions were per-
formed using the sine-Gordon Lagrangian density, for which
the results can be summarized as follows:

x0 
 1
2 − 1

4 y0�l��1 + 2t� , �14�

x1,2 
 1
2 − 1

4 y0�l� , �15�

x3 
 1
2 + 1

4 y0�l��3 + 2t� , �16�

�l=ln L is the logarithmic scale length� �33�. According to
the discussion by NO, we can find the criterion to determine
the BKT-transition point t=0 �i.e., the level-crossing condi-
tion�

x0 = x1,2 �17�

and the level-splitting condition as

3x0,1,2 + x3

4
=

1

2
. �18�

The latter is one of the universal relations among the excita-
tion levels on the separatrix �34� and enables us to check the
consistency of the calculations. Second, we investigate the
system near the separatrix y2=y0; it proceeds in an analogous
way to the above. Writing y2=y0�1+ t�, we then obtain the
dimensions as

x0 
 1
2 + 1

4 y0�l��3 + 2t� , �19�

x1,2 
 1
2 − 1

4 y0�l� , �20�

x3 
 1
2 − 1

4 y0�l��1 + 2t� . �21�

Thus, the level-crossing condition needed to determine the
transition point is given by

x1,2 = x3, �22�

and the level-splitting condition is given by

x0 + 3x1,2,3

4
=

1

2
. �23�

In analogy to the quantum-spin chain, each level crossing
represents an emergence of a SU�2� multiplet structure con-
sisting of the singlet and the triplet states �e.g., x3 and x0,1,2 at
y2=−y0�. Since these are the low-energy levels in the level-1
SU�2� Wess-Zumino-Witten model �34�, our criteria, Eqs.
�17� and �22�, are natural and also convincing from this
viewpoint.

At this stage, two comments are in order about the advan-
tage in using these relations �the level-spectroscopy ap-
proach� and the structure of the phase diagram. In Sec. III,
we will outline the numerical transfer-matrix calculations
performed to obtain the phase diagram. Although it can treat
systems with a strip geometry, accessible sizes are strongly
restricted to small values, e.g., L�20 in our calculations. In
the BKT transition, as seen above, the correction terms are
typically given by the logarithmic form y0
1 / ln�L /L0�. If
we employ the standard KT criterion such as x0= 1

2 to deter-
mine the transition point, its finite-size estimates include
these and thus exhibit a slow convergence in their extrapo-
lation to the thermodynamical limit. Alternatively, criteria
�17� and �22� take the logarithmic corrections into account,
so they provide finite-size estimates with fast convergences
�26�. Consequently, we can employ the following least-
squares-fitting form in extrapolating the finite-size data Q�L�
to the thermodynamic limit L→�:

Q�L� 
 Q��� + a/L2 + b/L4, �24�

which includes the 1 /L2 term stemming from the x=4 irrel-
evant operators as the leading universal correction �35�.

The biases from the finite-strip geometry disappear in the
limit, and the phase diagram is symmetric with respect to the
isotropic line Kh=Kv, which is one of the inherent properties
of the model. Here, we describe how the symmetry of the
lattice model is embedded in the sine-Gordon field theory.
We shall consider the generators of the C4v-point group: the
� /2 rotation �C4� and the reflection in the x axis ��x� about
the original site �see Fig. 1�c��. As well as coordinate trans-
formations, these bring about the following changes in the
height field �20,22�:

C4: �2	 → �2	 − �/2, �x: �2	 → � − �2	 . �25�

All other elements are obtained from Eq. �25�; among them,
we shall investigate transformations of the Lagrangian den-
sity and the principal operators by reflection about the diag-
onal line, �d �=�x �C4� �see Fig. 1�c��, which shifts the field
as

�d: �2	 → �/2 − �2	 . �26�

Since the orientational order parameter L2 is odd for �d, the
Lagrangian density transforms as

�d: L�K,y2,y4� → L�K,− y2,y4� . �27�

This indicates a connection between the positive and the
negative values of Kd. In addition, the above four operators
transform as

TABLE I. Discrete symmetries of the principal operators �O4,5

are referred to in Sec. IV�. The expressions M, kx, and P represent
the string number, the momentum in the x direction, and the parity
for the reflection �x, respectively �see text�. Also given are nota-
tions and identifications in both dimer and quantum-spin �optional�
languages.

Notations Operators Identifications M kx P

O0
�2 cos �2	 HC �Néel� 0 � −1

O1,2 exp��i�2�� monomer �doublet� �1 0 +1

O3
�2 sin �2	 VC �dimer� 0 0 +1

O4
�2 cos 2�2	 Orientational 0 0 +1

O5
�2 sin 2�2	 Plaquette 0 � −1
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�d: O0 → O3, O1,2 → O1.2, O3 → O0. �28�

Thus, the symmetry operation �d interchanges the roles of
the HC and the VC operators while leaving unchanged the
doublet of the monomer excitations. Consequently, as ex-
pected, the level-crossing and the level-splitting conditions
for Kd�0, Eqs. �17� and �18�, are translated to those for
Kd
0, Eqs. �22� and �23�. In Sec. III, we shall provide some
numerical data to check this symmetry.

III. NUMERICAL CALCULATIONS

Now, consider a system on � with the L�� stripe geom-
etry and introduce the transfer matrix TM�L� connecting
nearest-neighbor rows in the y direction �see Fig. 1�a��
�20,21�. As mentioned in Sec. I, the string number in the y
direction, M, is a conserved quantity, which can thus be
specified explicitly. We denote the eigenvalues as �p�L� and
their logarithms as Ep�L�=−ln��p�L�� �p specifies an excita-
tion level such as those listed in the above�. Then, the con-
formal invariance provides direct expressions of the central
charge c and the scaling dimension xp in the critical systems
as �36,37�

Eg�L� 
 Lf −
�

6L�
c, �Ep�L� 


2�

L�
xp. �29�

Here, Eg�L�, �Ep�L� �=Ep�L�−Eg�L��, and f correspond to
the ground-state energy, an excitation gap, and a free-energy
density, respectively. The ground state is found in the M =0
�Ny =L /2� sector, and the excited levels are also in the sec-
tors specified by the discrete symmetries given in Table I. In
addition, since, independent of the value of K, the scaling
dimension of a level-1 descendant is equal to 1, it has been
utilized to estimate a velocity of elementary excitation in the
Tomonaga-Luttinger liquid �see, for example, �25��. Accord-
ing to their treatment, the effective geometric factor �i.e.,
inverse velocity� can be also calculated from the descendant
level, say E�, as �27�

�−1 = lim
L→�

�E��L�
2�/L

. �30�

The corresponding excitation with small momentum can be
found numerically. In calculating c and x from the excitation
gaps via Eq. �29�, an estimate of � first needs to be obtained.
However, it is not necessary in determining the BKT-
transition points by Eqs. �17� and �22�, because these are
homogeneous equations of x, and thus the gaps—instead of
dimensions—can be used. This is one of the advantages of
the level-spectroscopy approach �27�.

In the following, we shall provide our results from nu-
merical calculations for systems up to size L=20. The meth-
odological aspects of transfer-matrix calculations have been
well explained in the literature �21�. Furthermore, due to the
sparse nature of the matrices, we can output all elements to
hard disk. Then, using the ARPACK library �38�, we can cal-
culate the dominant eigenvalues of the nonsymmetric real
matrices.

As a demonstration we give the Kd dependence of the
scaling dimensions at Ka=0 in Fig. 3�a�, where x0, x1,2, and

x3 are plotted by solid, dotted, and dashed lines, respectively.
While the data are for a system with L=20, we can see the
excitation spectra approach quite close to the exact ones at
the noninteracting point Kd=0 �5�. Furthermore, we find that
the HC and the VC excitations interchange their behaviors at
Kd=0, and the former �the latter� shows a level crossing with
the doublet excitations at a certain negative �positive� value.
According to theoretical predictions �17� and �22�, these can
provide finite-size estimates of the BKT-transition points to
the HC and the VC phases; we shall give some evidence to
support our augment. In Fig. 3�b�, we exhibit extrapolations
of the finite-size estimates to the thermodynamic limit ac-
cording to Eq. �24�. The downward �upward� pointing tri-
angles exhibit values of −Kd �Kd� at which the crossings
between x0 and x1,2 �x1,2 and x3� occur in the systems with
L=16, 18, and 20. Their extrapolated values strongly agree
with each other �i.e., their deviation is within 0.01%�, which
is the obvious condition to be satisfied. In Figs. 3�c� and
3�d�, we plot averaged values, i.e., the left-hand sides �LHSs�
of Eqs. �18� and �23�, as well as the dimensions at the BKT-
transition points estimated in Fig. 3�b�. In both cases, the
extrapolated values of the averages agree with the theoretical
value of 1

2 , which exhibits universal level splittings due to
logarithmic corrections expected at the transition points.
These observations show that both our strategy and numeri-
cal procedure are valid also for investigations of the IDM
�28�.

In Fig. 4, we summarize our results of numerical calcula-
tions for the global phase diagram of our model �1�, in which
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(b) x3=x1,2
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FIG. 3. �a� An example of the Kd dependences of scaling dimen-
sions at Ka=0 �for L=20 case�. An inserted key identifies excita-
tions and lines. �b� The finite-size estimates of the transition points
to the HC �VC� phase denoted by downward �upward� pointing
triangles are extrapolated according to Eq. �24� �see solid lines�. �c�
and �d� Checks of the universal level-splitting conditions �18� and
�23� at the BKT-transition points. An inserted key identifies excita-
tions and marks; xav in �c� ��d�� is the LHS of Eq. �18� �Eq. �23��,
and the least-squares fit solid line is exhibited.
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the diagonal line �the center point� corresponds to the isotro-
pic �noninteracting� system. Due to the fact that the phase
diagram is symmetric about the line, it is sufficient to explic-
itly calculate one side of the whole parameter space; our
calculations are thus restricted to the region Kd�0 �i.e., the
upper-left triangular area�. The open circles with solid lines
give the phase boundaries between the dimer-liquid and the
columnar phases. In the area apart from the BKT-transition
boundaries, we can estimate the Gaussian coupling from the
relation K=�x1,2 /x3. The contour lines of K= 1

6 , 1
4 , and 1

2 , in
addition to the points �plus marks� associated with K=1, 2,
and 3 on the isotropic line are given in the figure. As ex-
pected, the dimer-liquid phase spreads over the area satisfy-
ing the condition 0�K�4. For 1�K�4, this phase only
survives on the isotropic line, but it is eventually terminated
by another BKT transition caused by the marginally relevant
L4 perturbation. We provide our estimation of the point by
our approach �double circle in the figure� although some nu-
merical results were previously available �20,21�. We shall
explain our method and compare our results with these in
Sec. IV.

To check the criticality of the dimer-liquid phase, we es-
timate the central charge along the line Kh=0 by the use of
relations �29� and �30�. In Fig. 5, we give the Kv dependen-
cies of the effective geometric factor � �diamonds�, the coef-
ficient of the 1 /L correction � �=c /�� �squares�, and their
product to estimate c �circles�. With increasing anisotropy, �
deviates from the isotropic value of 1 and approaches a cer-
tain value around 1.5 in the limit Kv→−�. Simultaneously, �
declines in value and thus cannot itself give the universal
amplitude of the finite-size correction. However, as expected,

their product maintains a value c=1 within the dimer-liquid
phase, and hence the proper normalization using the effective
geometric factor is necessary for anisotropic systems. In the
attractive region, one finds a point at which the central
charge exhibits a steep decrease. We can check that the point
is almost on the phase transition boundary to the VC phase
�see the vertical arrow�, and thus that it is consistent with the
level-crossing calculations.

The dimer-liquid region with 1�K�4 corresponds to the
unstable Gaussian fixed line; the L2 perturbation, except for
K=1, brings about second-order phase transitions to the co-
lumnar phases. In this case, as 1 /�� �Kd��, the critical expo-
nent characterizing the diverging correlation length is given
by 1 /�=2−X2,0=2−2 /K �39�. To treat this transition, we
have performed a finite-size-scaling analysis of the corre-
sponding excitation gaps and have checked that the scaling
behavior is very good although we do not provide the data
here. In contrast, the liquid phase is absent in the more at-
tractive region, whence the phase transition between the HC
and the VC phases becomes first order �the solid line� ac-
companied by a jump in the phase-locking point ��2	� from
0 or � to � /2 or 3� /2.

Finally, we discuss the transition to the strong repulsion
phase �the upper-right gray-color region� at which the stiff-
ness of the Gaussian model vanishes �see squares with solid
lines in Fig. 4�. In terms of the height model, this vanishing
permits the interface to tilt globally without cost �20,40�. To
get some deeper insight, we shall here focus again on the
analogy to a transition observed in the quantum-spin chain.
The spin-1

2 XXZ chain is solvable �41,42� and exhibits c=1
criticality for the anisotropy parameter satisfying −1��
�1. This phase is terminated at the SU�2� ferromagnetic
point �=1, where there occurs a first-order phase transition
accompanied by the vanishing of the Gaussian coupling. At
this point, the ground state of the L-site chain forms a SU�2�
multiplet with total spin L /2 and thus possesses L+1 degen-
eracy with respect to the z component Stotal

z � �−L /2,L /2�.
This degeneracy is also implied from the following theoret-
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1+
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0
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K=4
3

2
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vertical
columnar

FIG. 4. �Color online� Global phase diagram. The diagonal line
�the center point� corresponds to the isotropic �noninteracting� sys-
tem. The circles with solid lines separate the dimer-liquid phase
from the HC and the VC phases. The squares with solid lines ex-
hibit the condition K=0, which is the boundary of the dimer-liquid
phase. Also plotted are the contour lines of K= 1

6 , 1
4 , and 1

2 as well as
the points �plus marks� of K=1, 2, and 3. The double circle indi-
cates another BKT-transition point brought about by L4.
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FIG. 5. �Color online� The Kv dependence of �, �, and c at Kh

=0. An inset identifying marks and physical quantities is given. The
phase boundary between the dimer-liquid and the VC phases is
around Kv
0.621 �see the arrow�.
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ical observation: since the vertex operator corresponding to
O0,n in Sec. II expresses a n-spin flip excitation from the
ground state with Stotal

z =0, the charge n in a L-site system is
restricted to values in �−L /2,L /2�. In addition, since the
scaling dimension X0,n becomes zero in the limit of K→0, at
least the corresponding L excited levels should degenerate to
the ground state to realize the L+1 degeneracy �43,44�. Re-
turning to our DM where the string number plays a role as a
total magnetization, the ground-state energy in each topo-
logical sector, EM,g�L�, is expected to become independent of
M. To see this degeneracy, we calculate the M-dependent
free-energy density LfM�L�=EM,g�L�. In Fig. 6, we give the
results for the isotropic system with L=20. The average of
couplings varies within −3�Ka�0 and our estimate of the
transition point is Ka
−1.97 �see Sec. IV�. One can see that,
with decreasing Ka, the free energy tends to show a weaker
M dependence and, for Ka smaller than roughly the transition
point, it becomes almost constant and zero. The above-
mentioned O�L� degeneracy inferred from the instability of
the Gaussian criticality seems to be consistent with this M
independence. However, there still exists a discrepancy in
the degree of degeneracy with the staggered state; we shall
discuss this issue for the rest of this section.

It is known that the degeneracy of the staggered state is
subextensive, i.e., �exp�aL� �21,45�. This is because, as de-
picted in Fig. 1�b�, the � /2 counterclockwise simultaneous
rotation of all dimers along a dotted line in the �11� direction
can be performed independently of each other—the same

holds also for clockwise rotations along the lines in the �11̄�
direction �a dashed line is an example�. Thus, if one chooses
a certain direction, the staggered state is completely ordered
in that direction and completely disordered in the other one.
While the problem of how the staggered state is stabilized is
quite unclear, we shall try to give an insight based on an
analysis of the one-string motion. For convenience, we con-
sider the transfer matrix connecting the next-nearest-
neighbor rows, i.e., T1−L/2

2 , so its eigenvalues or their loga-
rithms are squared �i.e., �2� or doubled �i.e., 2E�,
respectively. We treat two sites as one unit in which four

states are included. Then, we can analytically diagonalize the
matrix by a Fourier transformation and obtain the q depen-
dence of the energy 2Eq, i.e., the “dispersion relation” of the
one-string motion in the x direction. Here, we only show
results; the details of how to construct the transfer matrix and
also the calculation of eigenvalues in the one-string sector
are given in the Appendix. In Fig. 7, for several values of the
interactions �isotropic cases�, we draw the lower two of four
bands. When the eigenvalue becomes a complex number, we
take its magnitude in the plot. While the symmetric two-band
structure for the noninteracting case �Fig. 7�a�� �1,20� is de-
formed by interactions, there is a unique minimum at q=0
for finite interaction cases �Figs. 7�b� and 7�c��. At the same
time, as expressed by the dotted lines, complex-conjugate
pairs of eigenvalues start to appear near the zone boundary
points q= ��. And then, in the strong repulsion limit �Fig.
7�d��, we find an emergence of a twofold-degenerate zero-
energy flat band. The corresponding eigenvalues are given by
�q

2=e�iq, which represents the modulations with wave num-
ber �q in the y direction �46�. Consequently, our results

show dispersionless motion in the �11� and the �11̄� direc-
tions, which precisely reflect the above-mentioned degen-
eracy, and thus this flat band structure may be a signature of
the subextensive degeneracy in the staggered state. If we
accept this naive argument, we can conjecture that the stag-
gered state is only realized in the limit. However, our argu-
ment is of course at a very speculative level; a full under-
standing should include also the degeneracy in many-string
sectors.

IV. DISCUSSIONS AND SUMMARY

The isotropic case was discussed in detail in Refs.
�20,21�, where the BKT-transition point driven by L4 and the

M/L

fM

Ka

0

−0.5

0
0

−3

−1

x1/3

FIG. 6. �Color online� The free-energy density fM as a function
of the string number M and the interaction Ka for the isotropic
system with L=20. The phase boundary between the dimer-liquid
and the strong repulsion phases is estimated as Ka
−1.97.

−2

0

2

−π π0 q

2Eq

(a) Ka=0 (c) Ka=−2.0

(b) Ka=−0.5 (d) Ka=−oo

FIG. 7. Analytical results for the dispersion relations of a one-
string motion. The lower two of the four bands are drawn for the
isotropic systems. The complex values are twofold degenerate and
denoted by dotted lines; the flat band appears in the strong repulsion
limit �panel �d��.
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first-order transition point to the strong repulsion phase were
numerically obtained. We have also estimated these transi-
tion points �see the double circle and the double square in
Fig. 4�; in particular, for the former, the above level-
spectroscopy approach has been applied. Thus, here we
briefly explain our procedure and compare the results. Since
the Lagrangian density L0+L4 is analyzed in the region K

4, we focus our attention not on O0,3 but instead on the
following order parameters responsible for the breaking of
the � /2 rotational symmetry:

O4 = �2 cos 2�2	 , �31�

O5 = �2 sin 2�2	 . �32�

While the former is the orientational order parameter, the
latter represents the plaquette order �47� which has not been
found in classical DMs �16,21� �the locking points are
��2	�=� /4, 3� /4, 5� /4, and 7� /4�. One then finds that via
the transformation 2�2	→�2	 and K /4→K, the Lagrang-
ian density and the operators are reduced to

L0 + L4�y4� → L0 + L2�y4�, O4,5 → O0,3. �33�

Therefore, from the discussion in Sec. II, the level-crossing
and the level-splitting conditions �17� and �18� are satisfied
by the scaling dimensions of these operators, say x4,5 �here,
we have taken the condition y4�0 into account�. Since the
half-charge excitations exp��i 1

2
�2�� are absent in our sys-

tem, we employ the condition

3x4 + x5

4
=

1

2
�34�

to determine the BKT-transition point. The corresponding
excitation levels can be found in the sectors specified by
their symmetries given in Table I. We extrapolate the finite-
size estimates up to L=20 to the thermodynamic limit ac-
cording to Eq. �24�. We then obtain the BKT-transition point
as Ka
1.523. As we see in Table II, the agreement with
previous results is very good, which indicates that our ap-
proach is valid. Similarly, for first-order phase transition, we
have estimated the point via condition K=0 �see also Ref.
�21��, while others have determined this transition from a
point of breakdown in the condition c=1. Our result is closer
to the estimate of Alet et al. �20� although there still exists
considerable discrepancy among these estimates. Likewise,
for instance, for phase-separation transitions observed in

one-dimensional electron systems, higher-order corrections
have been argued to ambiguously affect estimations �44�.
Thus, we think that the discrepancy in these estimates may
reflect their effects.

To summarize, we investigated the anisotropically inter-
acting dimer model on a square lattice. For the attractive
case, the orientational-order-parameter perturbation intro-
duced by the anisotropy brings about the BKT transition to
the columnar phases. We pointed out the close relationship of
our model to a frustrated quantum-spin chain and then found
the criteria to determine the transition points. Using these,
we performed level-spectroscopy analysis of the eigenvalue
structures of the transfer matrices. Numerical results were
then summarized as the global phase diagram �Fig. 4�, which
includes the dimer-liquid, the columnar, and the strong repul-
sion phases. Furthermore, we checked the level-splitting con-
ditions and evaluated the value of the central charge, which
provided solid evidence to confirm the universality of the
phase transition. By contrast, for the repulsive case, although
we determined the dimer-liquid phase boundary, there exist
some points with unclear status within the strong repulsion
phase including the staggered state. Based on the dispersion
relation of the one-string motion, we gave a possible sce-
nario for the stabilization of the staggered phase. However,
although this issue still remains an open question, we now
think that the nature of the nonsymmetric real matrix might
have relevance to its description �46�.
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APPENDIX: A TRANSFER-MATRIX CALCULATION
IN ONE-STRING SECTOR

In this appendix, we shall explain how to construct the
transfer matrix in the one-string sector and an analytical cal-
culation of eigenvalues by the use of a Fourier transforma-
tion. Since a row of the reference configuration given in Fig.
1�b� expresses a string vacuum state, we write it as �0� �see
the top left in Fig. 8�. For convenience, we treat two sites in
the x direction as one unit cell, which includes four bonds
�see squares by dotted blue lines�. Then, one-string states can
be obtained via replacements of one of Lc �=L /2� unit cells
in �0� by four possible dimer configurations. From left to
right of the first line in Fig. 8 �except for the vacuum�, we
call these as �Al�, �Bl�, �Cl�, and �Dl�, respectively. Here, the
center is supposed to be an lth unit cell �l� �1,Lc��. Now,
consider transfers of one-string states to those in the next-
nearest-neighbor row in the y direction. Then, one can find
24 microscopic processes, which are listed in subsequent
lines in Fig. 8. For instance, the second line shows seven
microscopic processes of transfers from �Al� in the first row

TABLE II. Estimations of the BKT and the first-order transition
points in the isotropic system. For the BKT transition the rotational
order parameters were treated in Ref. �20�. In Refs. �20,21�, the
first-order transition point were estimated from the breakdown of
the condition c=1.

Criteria BKT Criteria First order

Ref. �20� Order parameters 1.54 c�1 −2.23

Ref. �21� c, x, etc. 1.5–1.7 c�1 −1.39

Present Equation �34� 1.523 K=0 −1.97
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to states in the third row and thus exhibits an operation of the
transfer matrix, i.e., T1−Lc

2 �Al�. Consequently, we can obtain
the following recursion relations for the transfers in the one-
string sector:

T1−Lc

2 �Al� = �Cl−1� + v2�Al� + h�Bl� + h�Cl� + �Dl� + �Bl+1� + �Dl+1� , �A1�

T1−Lc

2 �Bl� = h�Cl−1� + v2�Al� + h2�Bl� + h�Cl� + h�Dl� + �Bl+1� + �Dl+1� , �A2�

T1−Lc

2 �Cl� = �Cl−1� + v2�Al� + h�Bl� + h2�Cl� + �Dl� + h�Bl+1� + h�Dl+1� , �A3�

T1−Lc

2 �Dl� = v2�Cl−1� + v2�Bl� + v2�Dl� , �A4�

where coefficients represent the Boltzmann weights of inter-
actions in the first and the second rows. Next, by the use of
the Fourier transformation, we can block diagonalize the rep-
resentation of T1−Lc

2 : suppose that

�Xq� =
1

�Lc
�
l=1

Lc

e−iql�Xl� �X = A,B,C,D� , �A5�

then the q-block representation spanned by states
��Aq� , �Bq� , �Cq� , �Dq�� is given by a 4�4 complex non-
symmetric matrix

�T1−Lc

2 �q =�
v2 h + zq h + z̄q 1 + zq

v2 h2 + zq h + hz̄q h + zq

v2 h + hzq h2 + z̄q 1 + hzq

0 v2 v2z̄q v2
� , �A6�

where zq , z̄q
e�iq. Hence, the characteristic equation to de-
termine eigenvalues � is given by

1 v2 h h 1 1 1

h h 1 1v2 h2 h

1 1 h hv2 h h2

v2 v2v2

0 Al Bl Cl Dl

FIG. 8. �Color online� The string vacuum �0� and the one-string states ��Al� , �Bl� , �Cl� , �Dl�� are depicted in the first line. A square given
by a dotted blue line indicates a unit cell which includes two sites and four bonds. Dimers and strings are given by black rectangles and gray
lines, respectively. In subsequent lines, 24 microscopic processes of transfers of one-string states between two next-nearest-neighbor rows
are given with weights.
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�4 − 2�cos q + v2 + h2��3 + �v4 − 4h�1 − h�v2 + �1 − h2�2��2 + 2v2�1 − h�2�1 − v2 − h2�� + v4�1 − h�4 = 0. �A7�

Since it is invariant under a transformation q→−q, a q dependence of the eigenvalue structure is even with respect to the point
q=0. Meanwhile, in general cases we use a software to evaluate q dependences of eigenvalues; in some limiting cases, Eq.
�A7� becomes simple and permits us to easily manipulate: for instance, for the noninteracting case h=v=1, two of the four
eigenvalues are zero, and the rest is obtained from an equation �2−2�cos q+2��+1=0. It then provides two real bands, as
given in Fig. 7�a�. In contrast, for the strong repulsion limit h=v=0, two of the four eigenvalues are zero again, but others are
complex values with a modulus of 1, i.e., e�iq �see Fig. 7�d��. An implication of this eigenvalue structure, in particular a
correspondence to the degeneracy of states in the IDM is discussed in the last part of Sec. III.
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